Date: \qquad
Section 7.6 - Rotations and Rotational Symmetry

Learning Intentions:

I can identify if a shape has rotational symmetry
I can find the order of rotation and the angle of rotational symmetry
Definitions: A figure that can be mapped onto itself with a turn of less than one complete rotation has rotational symmetry. The number of times the figure matches itself in a turn of 360° is the order of rotation. To determine the order of rotation, place a point on the centre and turn the figure. Count the number of times the tracing matches the original figure in a 360° turn.

Example 1: For each figure, write the order of turn symmetry.
(a)

(b)

Definitions: The angle of rotation symmetry is the minimum angle needed to turn a shape or design onto itself. It is equal to 360° divided by the order of rotation.

From the examples above, the angle of rotation would be the following:
(a)
(b)

Definition: Rotational symmetry of order $\mathbf{1 8 0}$ degrees is also called point symmetry.
A simple test to determine whether a figure has point symmetry is to turn it upside-down and see if it looks the same. A figure that has point symmetry is unchanged in appearance by a 180 degree rotation.

\qquad

A shape that requires a rotation of 360° to return to its original position has order one. We say it does not have rotational symmetry.

Example 2: Determine the order or rotation and the angle of rotation for each figure below:
(a)

(b)

Order of rotation:
Order of rotation:
Angle of rotation:
Angle of rotation:

Example 3: For the playing card shown at the right:
(a) Determine the order of rotation for the card:
(b) Why do you think the card is designed like this?
(c) Does this playing card have line symmetry? Explain.

